\qquad

$1 \quad$ Section 5.1

1. Show that $\lim _{p \rightarrow \infty}\|x\|_{p}=\|x\|_{\infty}$ for all $x \in \mathbb{R}^{n}$.
2. Show that $\ell^{1}(\mathbb{N})$ is a proper subset of $\ell^{2}(\mathbb{N})$ and that if $x \in \ell^{1}(\mathbb{N})$, then $\|x\|_{2} \leq\|x\|_{1}$. Can you give a more general statement for arbitrary $1 \leq p<\infty$?
3. For $1 \leq p<\infty$, show that $\ell^{p}(\mathbb{N})$ is an infinite dimensional normed space. HINT: Consider the sequence $\left\{e_{i}\right\}_{i=1}^{\infty}$ with $e_{i}=\left\{\delta_{i j}\right\}_{j=1}^{\infty}$ where

$$
\delta_{i j}= \begin{cases}1 & \text { for } i=j \\ 0 & \text { for } i \neq j\end{cases}
$$

4. Show that $c_{00}(\mathbb{N}) \subset c_{0}(\mathbb{N}) \subset c(\mathbb{N}) \subset \ell^{\infty}(\mathbb{N})$.
5. Let $f_{k}(t)=\frac{\sin (k t)}{\sqrt{k}}$ for $0 \leq t \leq 2 \pi$. Show that $f_{k} \rightarrow 0$ in $C[0,2 \pi]$ with respect to $\|\cdot\|_{\infty}$. Does $f_{k} \rightarrow 0$ in $C^{1}[0,2 \pi]$ with respect to $\|\cdot\|_{\infty, 1}$? Why or why not?
6. Let (X, d) be a metric space. If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in X, prove that $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$ in \mathbb{R}.

2 Section 5.2

7. Let $g \in C[a, b]$ and define

$$
E=\{f \in C[a, b]: f(t)<g(t), \text { for all } t \in[a, b]\} .
$$

Prove that E is open in $C[a, b]$ with respect to $\|\cdot\|_{\infty}$. Is the same statement true if $C[a, b]$ is replaced by $B[a, b]$? Why or why not?
8. Let $g \in C[a, b], r>0$, and define the following sets:

$$
\begin{aligned}
& E=\{f \in C[a, b]: f(t) \leq g(t), \text { for all } t \in[a, b]\} \\
& F=\{f \in C[a, b]:|f(t)| \leq r, \text { for all } t \in[a, b]\}
\end{aligned}
$$

Prove that E and F are closed in $C[a, b]$ with respect to $\|\cdot\|_{\infty}$.
9. Let (X, d) be a metric space and $E, F \subseteq X$. Prove $\overline{E \cup F}=\bar{E} \cup \bar{F}$. Is it true that $\overline{E \cap F}=\bar{E} \cap \bar{F}$? If so, prove it, otherwise give a counterexample.
10. Let (X, d) be a metric space and $E \subseteq X . x$ is said to be a boundary point of E if every ε-neighborhood of x contains points of both E and $X \backslash E$. The set of all boundary points of E is denoted by ∂E. Show that ∂E is closed.
11. Let (X, d) be a metric space. Let $F \subseteq X$, prove that F is closed if and only if $F=\bar{F}$.
12. Let $s(\mathbb{N})$ be space of all sequences. Prove that $c_{00}(\mathbb{N})$ is dense in $s(\mathbb{N})$.
13. Let (X, d) be a metric space and $E, F \subseteq X$. Show $E^{o} \cap F^{o}=(E \cap F)^{o}$. Is it true that $E^{o} \cup F^{o}=(E \cup F)^{o}$? If so, prove it, otherwise give a counterexample.
14. Let $(X,\|\cdot\|)$ be a normed space and L a subspace. For $x \in X$, define $\hat{x}=x+L$ be the coset in the quotient space X / L induced by x. Show that $\|\hat{x}\|=\inf \{\|x+l\|: l \in L\}$ defines a seminorm on X / L and that this seminorm is a norm if and only if L is closed.

